Netleksikon - Et online leksikon Netleksikon er ikke blevet opdateret siden 2005. Nogle artikler kan derfor indeholde informationer der ikke er aktuelle.
Forside | Om Netleksikon

Kardinaltal

Talsystemer i matematik.
Elementære
\mathbb{N} Naturlige tal {0,1,2,3..}
\mathbb{P} Primtal\mathbb{N}, \mathbb{P}=\mathbb{N}x:{1,x}
\mathbb{Z} Heltal {..-1,0,1,..}
\mathbb{Q} Rationale tal { \mathbb{Z}, 1/2, 1/3, 2/3, 1/4 osv.}
Irrationale tal
Konstruerbare tal
Algebraiske tal
\mathbb{Tr}Transcendente tal
π Pi ≈ 3,1415926535
e "e" (konstant) ≈ 2,71828 (≠ \mathbb{Q})
\mathbb{R} Reelle tal {\mathbb{Z} , \mathbb{Q} , \mathrm{i} , \mathrm{Tr}}
Computable numbers
\mathrm{i} Imaginær enhed ≈/= \sqrt{-1}
Imaginære tal
\mathbb{C} Komplekse tal {\mathbb{R} , \mathrm{i}},
R1,1 Split-komplekse tal
Komplekse udvidelser
Bikomplekse tal
Hyperkomplekse tal
{\mathbb{R},i,j,k} Quaternioner ~i2=j2=k2=ijk=-1
Oktonioner
Sedenioner
Superreelle tal
Hyperreelle tal
Surreelle tal
Taltyper og særlige tal
Nominelle tal
Ordinaltal {} størrelse, position {n}
Kardinaltal {\aleph_1, \aleph_2, \aleph_3, \cdots}
P-adiske tal
Heltalsfølger
Matematiske konstanter
Store tal
Uendelig
<>
Betegner populært sagt antallet af elementer i en mængde, også i forbindelse med overtællelige mængder. Kardinaltal er indført af Georg Cantor omkring 1900 i forbindelse med udviklingen af den moderne mængdelære.

Et tal, er et kardinaltal, hvis der ikke findes en bijektiv afbilning fra nogen ægte delmængde af mængden fra 0 til .

Ethvert tal som er element i en tællelig mængde er et kardinaltal, ligesom uendelig (forstået som grænseværdien for følgen ), der betegnes , er et kardinaltal. er det første uendeligt store kardinaltal, de følgende benævnes . Cantor viste at der ikke findes et største kardinaltal ligesom der er væsentligt flere kardinaltal større end end mindre end.

Se også



Denne artikel er fra Wikipedia. Læs artiklen hos Wikipedia.





Bolig.com
Boligsite med dagligt opdaterede boligannoncer med lejeboliger og andelsboliger.
Andelsbolig i København
Lejebolig i København
Selvsalg
Realkreditlån
Boligadvokat
Rejseforsikringer
Husk at kontrollere din rejseforsikring inden du tager ud at rejse. Læs mere på: Rejseforsikring
Bilforsikringer
Sammenlign bilforsikringer og find information om forsikringer til din bil på: Bilforsikring


Denne artikel er fra Wikipedia. Denne hjemmeside tager ikke resourcer fra Wikipedias hardware. Netleksikon.dk støtter Wikipedia projektet finansielt. Indholdet er udgivet under GNU Free Documentation License. Kontakt Netleksikon, hvis ophavsretten er krænket.

Antal besøgende: